CLASS - VIII

CHAPTER - 4

Module - 2/2

PRACTICAL GEOMETRY

2.3 When two adjacent sides and three angles are known:

As before, we start with constructing a triangle and then look for the fourth point to complete the quadrilateral.

Example 3: Construct a quadrilateral MIST where $\mathrm{MI}=3.5 \mathrm{~cm}, \mathrm{IS}=6.5 \mathrm{~cm}, \angle \mathrm{M}=75^{\circ}, \angle \mathrm{I}=$ 105° and $\angle \mathrm{S}=120^{\circ}$.

Solution:

Here is a rough sketch that would help us in deciding our steps of construction. We give only hints for various steps:

Step 1 How do you locate the points? What choice do you make for the base and what is the first step? (Fig 4.16)

Step 2 Make $\angle \mathrm{ISY}=120^{\circ}$ at $\mathrm{S}($ Fig 4.17 $)$.

We get the required quadrilateral MIST.

EXERCISE 3

1. Construct the following quadrilaterals.
(i) Quadrilateral MORE

$$
\mathrm{MO}=6 \mathrm{~cm}
$$

$$
\mathrm{OR}=4.5 \mathrm{~cm}
$$

$$
\angle \mathrm{M}=60^{\circ}
$$

$$
\angle \mathrm{O}=105^{\circ}
$$

$$
\angle \mathrm{R}=105^{\circ}
$$

(iii) Parallelogram HEAR

$$
\mathrm{HE}=5 \mathrm{~cm}
$$

$$
\mathrm{EA}=6 \mathrm{~cm}
$$

$$
\angle \mathrm{R}=85^{\circ}
$$

(ii) Quadrilateral PLAN
$\mathrm{PL}=4 \mathrm{~cm}$
$\mathrm{LA}=6.5 \mathrm{~cm}$
$\angle \mathrm{P}=90^{\circ}$
$\angle \mathrm{A}=110^{\circ}$
$\angle \mathrm{N}=85^{\circ}$
(iv) Rectangle OKAY
$\mathrm{OK}=7 \mathrm{~cm}$
$K A=5 \mathrm{~cm}$

2.4 When three sides and two included angles are given

Under this type, when you draw a rough sketch, note carefully the "included" angles in particular.

Example 4: Construct a quadrilateral ABCD , where $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{CD}=6.5 \mathrm{~cm}$ and $\angle \mathrm{B}=105^{\circ}$ and $\angle \mathrm{C}=80^{\circ}$.

Solution:

We draw a rough sketch, as usual, to get an idea of how we can start off. Then we can devise a plan to locate the four points.

Step 1 Start with taking $\mathrm{BC}=5 \mathrm{~cm}$ on B . Draw an angle of 105° along BX. Locate A 4 cm away on this. We now have B, C and A (Fig 4.20).

Step 2 The fourth point D is on CY which cm_{m} inclined at 80° to BC . So make $\angle \mathrm{BCY}=80^{\circ}$ at C on BC (Fig 4.21).

Step 3 D is at a distance of 6.5 cm on CY . With C as centre, draw an arc of length 6.5 cm . It cuts CY at D.

Step 4 Complete the quadrilateral $\mathrm{ABCD} . \mathrm{ABCD}$ is the required quadrilateral (Fig 4.23).

EXERCISE 4

1. Construct the following quadrilaterals.
(i) Quadrilateral DEAR
(ii) Quadrilateral TRUE

$$
\begin{array}{ll}
\mathrm{DE}=4 \mathrm{~cm} & \mathrm{TR}=3.5 \mathrm{~cm} \\
\mathrm{EA}=5 \mathrm{~cm} & \mathrm{RU}=3 \mathrm{~cm} \\
\mathrm{AR}=4.5 \mathrm{~cm} & \mathrm{UE}=4 \mathrm{~cm} \\
\angle \mathrm{E}=60^{\circ} & \angle \mathrm{R}=75^{\circ} \\
\angle \mathrm{A}=90^{\circ} & \angle \mathrm{U}=120^{\circ}
\end{array}
$$

2.5 Some Special Cases

To draw a quadrilateral, we used 5 measurements in our work. Is there any quadrilateral
which can be drawn with less number of available measurements? The following examples
examine such special cases.

Example 5: Draw a square of side 4.5 cm .

Solution: Initially it appears that only one measurement has been given. Actually we have many more details with us, because the figure is a special quadrilateral, namely a square. We now know that each of its angles is a right angle. (See the rough figure) (Fig 4.24)

This enables us to draw ABC using SAS condition. Then D can be easily located. Try yourself now to draw the square with the given measurements.

Example 6: Is it possible to construct a rhombus ABCD where $\mathrm{AC}=6 \mathrm{~cm}$
and $\mathrm{BD}=7 \mathrm{~cm}$? Justify your answer.

Solution: Only two (diagonal) measurements of the rhombus are given.
However, since it is a rhombus, we can find more help from its properties.

The diagonals of a rhombus are perpendicular bisectors of one another.

So, first draw $\mathrm{AC}=7 \mathrm{~cm}$ and then construct its perpendicular bisector. Let them meet at 0 . Cut off 3 cm lengths on either side
 of the drawn bisector. You now get B and D.

EXERCISE 5

Draw the following.

1. The square READ with $\mathrm{RE}=5.1 \mathrm{~cm}$.
2. A rhombus whose diagonals are 5.2 cm and 6.4 cm long.
3. A rectangle with adjacent sides of lengths 5 cm and 4 cm .
4. A parallelogram OKAY where $\mathrm{OK}=5.5 \mathrm{~cm}$ and $\mathrm{KA}=4.2 \mathrm{~cm}$.
